Factoriales, Raíces, Cambios de Base, Trigonometría y Geometría
Encuentra en esta pagina los mejores post de artículos relacionados con las operaciones matemáticas de:
Factoriales, raíces, cambios de base, trigonometría y geometría con el autor autodidacta Pol Flórez.
Estos contenidos tratan de llegar a números base X mediante raíces, u obtener de una base X un número N , con sumas o multiplicaciones de números en series.
También trata de los diferentes cambios de base en el número X y del uso y explotación en geometría de las 2 primeras ( Factoriales y Raíces ).
01 Saber Mas Sobre Factoriales:
01 ¿Que es el Factorial?
01 Definicion de Factorial Multiplicativo
El factorial de un número o la notación factorial de un número, es un número Z , que es igual, al resultado de multiplicar un valor natural en serie,
con un factor variable e incremental de unidad en unidad ( de 1 en 1 ), hasta, el valor (N-1) veces factorizado a la cual le sumamos
su parte racional si es que le corresponde.
La notación factorial en las calculadoras Pol Power Calculator, se considera la sumatoria de multiplicaciones en serie sobre naturales
fraccionando racionales basados en estos naturales, con la multiplicación de A=A·N incrementalmente (N-1) veces.
Por ejemplo:
3! = 1·2·3 = (1·2)-->(2·3) = 6 que además es el primer número, después del primer número de valor grupal ( el 2 )
que comienza por grupos del 2 y sigue con el 3 que es su siguiente natural, y que a demás, es un número super perfecto.
Las calculadoras Pol Power Calculator, calculan los factoriales de multiplicaciones naturales de la manera fácil, ya que no es muy difícil, que es repetir un bucle el
número factorizado de veces incrementando el número multiplicado. Cuando el número N es un racional lo tratamos a parte del natural
Para calcular los números factoriales racionales, es diferente a cómo lo hacen otras calculadoras y emplea el mismo método que en la potenciación normal,
que es el siguiente:
Buscando el Racional de N,M! tenemos que:
Resto = (N+1)! - N! donde Resto contiene un número par entre los 2 naturales de N factorial...
N,M! = Resultado = N! + (Resto · 0,M) Entonces la parte natural la sumamos a la parte decimal basada en la natural y ya está...
Así el calculo, siempre tiene el mismo intervalo de crecimiento exponencial entre (N+1)! y N! , lo cual, tras fraccionar-lo, se determina el
número de incógnita que va hay en medio con esos decimales, ya que estos, están dentro de ese limite entre N! y (N+1)!
Cómo es de esperar, este proceso de sumas y multiplicaciones, nunca provoca números infinitos, por ser sumas y multiplicaciones de números finitos.
Esto mismo, varia en otras calculadoras que no sean las Pol Power Calculator, cuando N es racional.
Si para 3!=6 y 4!=24 entonces el 3,5!S=15=((24-6)·0,5)+6
La lógica se la llevan los números naturales en los que se basa el algoritmo de la sumatoria para el operador de factorial en las Pol Power Calculator.
03 Para Que Sirven Las Notaciones Factoriales Multiplicativas
La utilidad de los números factoriales multiplicativos, puede resumir-se, a hacer-la servir en matemática de combinatoria, estadística y probabílistica.
Por ejemplo:
Imaginemos que tenemos 3 gatos y los tenemos que ordenar con todos los diferentes ordenes que puedan existir.
El orden quedaría en esto:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
Así lo que tenemos es 3!=6=1·2·3 posibles permutaciones que se resumen a 2 combinaciones por gato ( 2·3 ), para el orden de esos 3 gatos totales.
Si nos fijamos, de los 6 casos, hay 3 que son inversos a los otros 3
Este ejemplo se puede aplicar en este caso a los factoriales de suma siendo de mismo resultado para el factor de 3 que es 3!S=3!=6
04 Por Que N Factorial Menor a 2 es Igual a N
El que N!=N cuando N<2 es por los propios pasos de factoriales de 1!=1 y 2!=2 , los cuales presentan la igualdad de cara a N=N! , y de esta
igualdad que los factoriales menores a 2 , sean igualdades de las entradas de factoriales.
Esto se produce porque el factorial menor a 2 es 1 , y las multiplicaciones de 1 por algo, siempre son ese algo.
Si 1!=1 y el 2!=2 lo normal es que los factoriales menores a 2 , sean igualdades de los números de entradas de factoriales normales.
05 Por Que 0 Factorial es Igual a 0
En las calculadoras Pol Power Calculator, el factorial de multiplicaciones normal empieza a partir de valores grupales naturales mayores a 2 ( a partir de 3 )
donde los factoriales de 0! 1! y 2! se igualan a la base factorial.
Se piensa que 0! = 1 y que 1! = 1 según la siguiente formula de factoriales normales:
N! = (N-1)! · N
Si la ecuación es con menos es fácil confundir los resultados con menores de 3 con por ejemplo:
Pero, reformulando la ecuación de N! = N!·(N-1) , multiplicando y sumando, también hemos de dar con esta
otra igualdad:
(N+1)! = N! · (N+1)
Que dado este ejemplo se deberia empezar a comprobar por un valor grupal, y sabiendo que 0! = 0 y 1! = 1 ,
tenemos que para un valor grupal factorizado se cumple que:
0 = 0! = 0 Este caso no existe... aunque queda bien definido sin igualdad al siguiente...
1 = 1! = 1 Este caso no existe... diferente al anterior que sigue en el siguiente...
2 = 2! = 1! · 2 Este caso no existe... aunque aquí puede empezar ya que un valor es de valor grupal...
6 = 3! = 2! · 3 Y Aquí empieza de verdad el valor distinto de N! con N que es de valor grupal mayor a 2...
24 = 4! = 3! · 4
120 = 5! = 4! · 5
Dando-se así y siguiendo la serie factorizable con naturales, que 1! = 1 y 0! = 0 de esta manera...
06 Correcciones de Pol Sobre Factoriales Racionales
Los factoriales de multiplicaciones con números racionales, en las calculadoras Pol Power Calculator,
funcionan de maneras no oficialista, por lo que la siguiente información es según las teorías de Pol.
Separación de media unidad (0,5) entre resultados.
Donde cuadratica-mente esto se cumple para todos los racionales de media unidad solo en las calculadoras Pol Power Calculator...
Los siguientes ejemplos de algoritmo, nos sirven para verificar que los números factoriales intermedios se ajustan a los números de origen en
la teoría de Pol, donde estos resultados, respetan los números de origen y no los factorizados de resultado:
Por ejemplo:
120 = 5!
420 = 5,5!
720 = 6!
Origen 3,5 = 420 / 120
Origen 6 = 720 / 120
Basandonos en estos origenes:
Origen verdadero 2,5 = 6 - 3,5 aquí es 2,5 de 5·0,5
300 = 120 · 2,5
5,5! = 420 = 300 + 120
6 = (( 2 · 6 ) / 2 ) Si el natural es esto 2!=2 entre 3!=6
12 = (( 4 · 6 ) / 2 ) el racional que esta entre 6=3! de 24/6=4 donde la mitad de 24 es 12 y es el doble del anterior ( 6·2=12=3,5! que es la mitad para el 6·4=24=4! )
24 = (( 6 · 24 ) / 6 ) Así, esté siguiente es el doble del anterior por 12·2 ya que viene de 6·4
60 = (( 15 · 24 ) / 6 ) donde este racional es 24·2,5
120 = (( 24 · 120 ) / 24 ) El Natural 24·5
360 = (( 72 · 120 ) / 24 ) Los saltos son proporcionales a los naturales 120·3
Etc...
08 Reverso del Factorial Multiplicativo
El reverso del factorial multiplicativo se resuelve con un bucle que mira su parte natural, y cuando tienes esa parte natural,
calculas la parte racional con los números de las respuestas. Cuando ya has completado el bucle que mira su parte natural ya
tienes su reverso natural y con hacer un caso que mire su parte racional, ya lo tienes.
Puedes ver el algoritmo del reverso del factorial multiplicativo en la aplicación web de factoriales de Pol Software.
El factorial de suma, es simplemente un operador más, que obedece a una serie sumatoria, en el que se hace más de una suma en serie de un número incremental
que se repite (N-1) veces.
Los factoriales de suma, están en puntos intermedios entre un número X y su cuadrado.
El factorial de sumas de un número natural, está representado dentro del triángulo de Pascal, por la tercera columna de ambos lados.
El juego del domino tiene 7!S=28 fichas de juego y estas se expresan en todas las jugadas en forma de triángulo rectángulo en una gráfica de 2 ejes de coordenadas.
Por ejemplo: El 2!S=1+2=3 y este 2 esta en la fila 2 donde hay tres casillas desde el principio , el 3!S=1+2+3=6 donde pasa parecido pero con la tercera fila que
resulta en 6 casillas , el 4!S=1+2+3+4=10 con su incremento , y, el 5!S=1+2+3+4+5=15 , entre otros resultados.
Los números factoriales de suma de naturales, son iguales a los antecuadrados de cualquier número natural.
Los factoriales de suma racionales, en el operador de factorial de suma, denota serie sumatoria de repetición adaptada a naturales, y no a una simple ecuación
cómo es el antecuadrado de un número que se consigue con la ecuación X^1,5
Por tanto, factorial de suma, es similar o parecido al antecuadrado, pero, un factorial de suma racional, denota que no es una sola ecuación ( antecuadrado ),
donde los racionales del factorial de sumas, siguen una pauta programada en la función de operador de factorial de suma, que se adapta a los naturales,
siguiendo la pauta que indica la parte natural de esa parte racional. Esto se resume a que el factorial de suma racional obedece a su serie sobre lo natural.
02 El 6 es un Numero Super Perfecto Por Esto
El 6 es un número super perfecto por varios motivos, que paso a describir.
El 6 es el único número que es la suma de todos sus divisores naturales, y a su vez, es la multiplicación de todos sus números divisores naturales,
lo cual, me lleva a decir, que este número es un número super perfecto y único por tener esta cualidad que lo hace único.
El 6 cumple con esto = 3! = 3!S y 3 es el número de puntos inicial mínimo de una gráfica de plano 2d de 2·2 para dibujar un triángulo en la gráfica
El 6 también cumple que entre todos los divisores enteros de 1 a 6 , todos son de resultado finito:
1,2 = 6 / 5
1,5 = 6 / 4
2 = 6 / 3
3 = 6 / 2
Si usamos la terna Pitagórica perfecta de 3 4 5 el siguiente es el 6 pero en sus números también el 6 está presente cómo se muestra aquí:
Así el 6 , es un número super perfecto por estos y otros motivos...
03 Los Factoriales de Sumas Racionales Se Calculan Asi
Los factoriales de sumas de números racionales positivos y sin signo, son una cosa especial, que se calcula de la siguiente manera en las calculadoras Pol Power Calculator.
X,Y!S = (((X+1)!S - X!S) · 0,Y ) + X!S
Donde aquí denotamos que el factorial de suma racional, no es lo mismo, que el antecuadrado de X el X^1,5 = (X+1)·(X/2) donde el
operador de factorial de suma racional ofrece un resultado que solo responde bien a la serie de sumatoria a la que pertenece.
Entonces esto deja estos números de esta manera:
Este es lo mismo con potencias:
7,875 = 3,5 ^ 1,5
Pero el operador de factoriales de suma me esta dando lo siguiente:
8 = 3,5!S
Entonces, ¿Es esto correcto?
Pues creo que si, ya que esto se resume a que un factorial de suma racional en el operador esta entre esto:
6 = 3!S
10 = 4!S
4 = 10 - 6
2 = 4 · 0,5
8 = 6 + 2
¿Y esto por que es así?
La razón es evidente, siguen la serie de sumatoria que sigue con esos números y esto está en lo siguiente que es su distanciamiento, por ejemplo:
0,125 = 8 - 7,875
Entonces esta distancia ¿Cuantas veces esta en los 2 números?
64 = 8 / 0,125
63 = 7,875 / 0,125
Entonces de lo que estamos hablando es que hay una diferencia entre estos de 1 entre el 64 y 63 ,lo que nos deja en una simetría anterior o posterior según la elección...
04 La Norma del Factorial de Sumas entre 0 y 1
Los factoriales de sumas, también cumplen la norma de igualdad de factoriales de entrada, cuando estos son menores o iguales a 1 ,
donde los factoriales de suma menores a 1 tienen la igualdad del número factorial de entrada.
Esto solo se produce cuando es la suma de 0 + un número entre 0 y 1 o igual a 1.
Así, los factoriales de suma menores a 1!S son igualdades de los números de entrada ya que son sumas de 0 más algo entre 0 y 1.
05 Raiz Base 1,5 Como Funcion Reversiva de los Factoriales de Suma Naturales
Las raíces de base 1,5 en las calculadoras Pol Power Calculator, nos devuelven la base del ante-cuadrado, que, en su
defecto, contiene la parte entera exacta y cuando son sobre racionales contienen una parte apróximada de la parte racional del resultado para X en los factoriales de suma.
El ante-cuadrado, cuando es racional, es diferente a factorial de suma, ya que uno es una simple ecuación y el otro opera a base de repeticiones
sumatorias que están adaptadas a naturales y siguen su serie con las pautas indicadas por los números naturales.
06 La Regla de los Pares e Impares Dobles en Factoriales de Sumas
En los factoriales de Suma de números naturales del 1 al infinito, podemos ver, que siempre hay la regla del doble impar seguido de doble
par, en los resultados de cada 4 factoriales de suma consecutivos.
Entre X!S y (X-1)!S cuando X es alguna potencia de base 2 natural con exponente natural de valor grupal, esta potencia siempre señalará el punto intermedio
natural entre factoriales de suma naturales correlativos, que además, será la mitad exacta de su cuadrado natural.
Por ejemplo:
Con 4 hacemos 4!S - 3!S = 10 - 6 donde entre 10 y 6 esta en el medio el 8=2^3=3,5!S donde 8 es la mitad exacta de 16=4·4=4^2
Otro ejemplo:
Con 8 hacemos 8!S y 7!S = 36 y 28 Entonces se cumple que entre 36 y 28 está el 32=2^5=7,5!S donde 32 es la mitad exacta de 64=8·8=8^2
Otro ejemplo:
Con 16 lo mismo 16!S y 15!S = 136 y 120 está el 128=2^7=15,5!S donde 128 es la mitad exacta de 256=16·16=16^2
etc...
La formula que relaciona los factoriales de suma de X con los cuadrados de X es la siguiente:
X^2 = X + (X-1)!S + (X-1)!S = X!S + (X-1)!S
Formula del ante-cuadrado natural de X
X^1,5 = (X+1)·(X/2) = X·((X·0,5)+0,5)
08 Relacion de Factoriales de Suma con Potencias de Base 2 y Exponente Impar
Coincidencias de factoriales de suma con potencias de base 2 de exponente natural e impar:
2 = 1,5!S = ((2^1)-0,5)!S = 2^1
8 = 3,5!S = ((2^2)-0,5)!S = 2^3
32 = 7,5!S = ((2^3)-0,5)!S = 2^5
128 = 15,5!S = ((2^4)-0,5)!S = 2^7
512 = 31,5!S = ((2^5)-0,5)!S = 2^9
09 Simetria de Factoriales de Suma en las Calculadoras
Aquí tienes los primeros números de resultado de factoriales de suma en las calculadoras Pol Power Calculator, pasando por los de media unidad también:
Si miramos las equivalencias entre saltos de 1 en todos los correlativos veremos lo siguiente:
2 = 1,5!S
4,5 = 2,5!S
Entonces entre estos dos hay:
2,5 = 4,5 - 2
Así los demás cumplen que:
3 = 2!S
6 = 3!S
3 = 6 - 3
8 = 3,5!S
12,5 = 4,5!S
4,5 = 12,5 - 8
Etc...
Así, el cálculo de un factorial de sumas racional con el operador de factoriales de suma, tiene simetría exacta con lo natural, cuando lo
utilizamos en el operador explicito de factoriales de suma.
No hay que olvidar, que el factorial de sumas, es un operador salido de una sumatoria, con formato de serie, que forma series de números,
a los que tiene simetría natural.
Esto mismo es parecido a la potenciación de las Pol Power Calculator, donde con una sola multiplicación de a si mismo no podemos llegar al 8 con exactitud , pero,
el propio operador si que puede hacer-lo, cuando hace más de dos veces de a si mismo en la cuenta (2^3=8=2·2·2 son 2 veces y no 1 de 8yRoot2 donde
esta última nunca llega a ser 8 si no 7.9999... ).
Entonces, lo que pasa en factoriales de suma es parecido a las potencias con los números racionales, que siguen una simetría de naturales
en los operadores de potencia y factorial, donde estos números siguen series de números parecidos a los naturales.
10 Relacion de Factoriales de Sumas con los Numeros Perfectos
Los números perfectos, se relacionan con los factoriales de suma, con esta ecuación:
Número Perfecto = ((2^X)-1)!S donde X es cualquier número impar natural mayor a 2 , exceptuando el 2 cómo par valido siendo este una excepción.
11 Funciones de los Antecuadrados
El factorial de suma natural, es siempre igual al ante-cuadrado multiplicativo natural. Lo opuesto al ante-cuadrado multiplicativo, es el ante-cuadrado dividido de un número
de valor grupal natural, y se hace, cambiando la multiplicación por una división, de la ecuación del ante-cuadrado multiplicativo.
Por ejemplo: Para saber el ante-cuadrado multiplicativo de 9 natural tendríamos lo siguiente:
Factorial de suma natural de 9 o ante-cuadrado de 9 natural es 45=9^1,5=9!S=9·((9/2)+0,5)
Entonces, el opuesto del ante-cuadrado dividido seria:
Ante-cuadrado dividido 1,8=9/((9/2)+0,5)
Así la distancia entre ellos tiene que ser un cuadrado y su multiplicación nos devuelve el cuadrado de 9 que es 81=1,8·45=9^2
Los 2 tipos de factoriales ( Normal y de Sumas ), son números serie, que salen de una serie de resultados factorizados, y, se meten en otra serie,
en la que hemos factorizado a un solo valor la primera serie, y decimos que es su factorial en el que hay cierta correlatividad de esa serie.
Todo lo podemos ver cómo series de números en las matemáticas. La propia definición de número es algo que contabiliza algo en una serie de
símbolos. Las series están por todos lados, hay series de naturales, series de enteros, principalmente y luego otras más conocidas como las
series de Fibonacci, series de cuadrados, series de factoriales, etc...
Yo a mi juicio, lo veo todo cómo tipos de series que salen de una para entrar en otra, en las que vas de un punto a otro con los diferentes
operadores correlativamente entre puntos y siempre hay una equidad equitativa equidistante y correlativa cómo digo que hay en las calculadoras
Pol Power Calculator.
02 Saber Mas Sobre Raices o Radicales:
01 ¿Que es una Raiz?
Definicion de Raiz o Radical
Lo que se persigue con la raíz, es obtener la base en base 10 de una potencia dada, donde lo que tenemos es el resultado de esta potencia que es el
radicando de la raíz, y el exponente de esa potencia, que es la base de la raíz, y con ello buscamos un número en base 10 de resultado
de la raíz que sea la base de base 10 de esa potencia.
Este operador, se cree ser el inverso de una potencia, pero, esto no es así, ya que este operador, lo que hace es buscar el número de incognita que
es la base de una potencia, y es precisamente, el número base del que si disponiamos en otros operadores calificados cómo operadores inversos ( logaritmo ) de la
potencia, que si teniá algo en común, cómo es la base.
En las calculadoras Pol Power Calculator, las raíces son distintas a las de otras calculadoras.
El operador de raíz, con radicando menor a 4 ( técnicamente el primer caso de empezar potenciando por valores grupales 2^2=4 ) y con base
de raíz natural mayor a 1 ( 2 o más otra vez ) , nunca devuelve valores que sean de valor grupal ( nunca son mayores a 2 estando entre 1 y 2 ).
El operador de raíz, con radicando entre 0 y 1 , con base grupal, es siempre mayor al radicando de la ecuación.
También hay que remarcar , dejando de lado los naturales, cuando usamos valores racionales en radicandos, pasa lo siguiente:
Cuando en una raíz o radical, radicando es mayor a 4 y base es de valor grupal , el resultado de la raíz, es siempre menor a radicando.
Cuando en una raíz o radical, radicando está entre 1 y 4 y base es de valor grupal , el resultado de la raíz, está siempre entre 1 y 2
Cuando en una raíz o radical, radicando esta entre 0 y 1 , y la base es mayor a 1 , el resultado de la raíz siempre es mayor al radicando y está entre 0 y 1
Cuando una raíz o radical, la base esta entre 0 y 1 , con radicando mayor a 0 , estas ya no existen, siendo el resultado de una potencia con
esos números el de una multiplicación normal, y el resultado de la raíz, es una división normal, ya que se hace 0 veces la multiplicación
de la parte entera más la parte decimal del valor de la parte entera.
De estas observaciones, que se puedan hacer una idea de todo.
Por ejemplo, en las Pol Power Calculator tenemos las siguientes raíces o radicales:
El primer ejemplo es 4 yRoot 0,25 = 16 ya que 16 ^ 0,25 = 4
El segundo ejemplo es 0,125 yRoot 0,5 = 0,25 ya que 0,25 ^ 0,5 = 0,125
El tercer ejemplo es 4 yRoot 2 = 2 ya que 2 ^ 2 = 4
El cuarto y último ejemplo es el de 0,25 yRoot 2 = 0,5 ya que 0,5 ^ 2 = 0,25
Lo siguiente evidencia los errores en otras calculadoras con la siguiente proporción lógica:
Si tenemos que entre 4 y 8 hay 1 de exponente, tendríamos que tener 0,25 decimas de ese 1 de exponente para los números 5 6 y 7 en estas ecuaciones,
pero, esto solo lo cumplen las Pol Power Calculator. Esto en otras calculadoras es erróneo y arbitrario...
1 Proceso Para Hacer Una Raiz de Cualquier Base Mayor a 1
Cómo resolver las raíces de cualquier base en un método por aproximación
Buscamos un número A = (B^C) que sea igual o inferior a nuestro número ( Num ) elevando B Por C
Donde B = Producto
Donde C = es la base de la raíz o el exponente de la potencia ( 2,3,4,etc... )
Cuando tenemos A debemos sumar A a Num para dividir-lo entre la multiplicación de (B^(C-1))· 2
Si C < 2 C queda en (B^C)· 2 sin la resta de 1
Con lo que tendremos el resultado aproximado si el resultado es asimétrico con dígitos decimales, y exacto, si es entero o simétrico.
3 Ejemplos de Raices de Cualquier Base Mayor a 1
Aquí te muestro en 3 ejemplos cómo hacer una raíz simétrica de base seleccionable por pasos.
Ejemplo de Raíz Cuadrada de 16 ( simétrica ):
4 = 16 yRoot 2
16 = 4 ^ 2
32 = 16 + 16
4 = 4 ^ 1
8 = 4 · 2
4 Simetric = 32 / 8
Ejemplo de Raíz Cubica de 64 ( simétrica ):
4 = 64 yRoot 3
64 = 4 ^ 3
128 = 64 + 64
16 = 4 ^ 2
32 = 16 · 2
4 Simetric = 128 / 32
Ejemplo de Raíz Cuadrica de 4.096 ( simétrica ):
8 = 4.096 yRoot 4
4.096 = 8 ^ 4
8.192 = 4.096 + 4.096
512 = 8 ^ 3
1.024 = 512 · 2
8 Simetric = 8.192 / 1.024
03 La Limitacion de las Raices en las Pol Power Calculator Hasta la Base 24
El Limite de Base 24 Para Raices
La calculadora Pol Power Calculator Web tiene limitadas las bases hasta 24
Por ejemplo, si tenemos la base 64 entonces hay que hacer una raíz de base 8 y con el resultado hacer otra también de base 8
Con otro ejemplo, lo podemos ver con base 32 que es Z = X YRoot 16 siguiendo con Z YRoot 2
Si tenemos la de base 100 podemos hacer raíces de base 10 2 veces. Para las de 1000 las hacemos 3 veces con base 10 etc...
Esto, resulta muy útil y practico, y resuelve el dilema del tiempo de proceso.
04 ¿Que es una Super Raiz?
Definicion de Super Raiz
La super-raíz o super-radical, es varias raíces una dentro de otra.
Las super raíces son muy útiles con las Pol Power Calculator ya que nos permite hacer raíces de base mayor a 24
Por ejemplo:
Si tenemos que ((2^2)^2)^2=256
Así la super raíz de 256 ySRoot 2 3 es:
16 = 256 yRoot 2
4 = 16 yRoot 2
2 = 4 yRoot 2
Así nos queda que 256 ySRoot 2 3 = 2
03 Saber Mas Sobre Trigonometria:
01 ¿Que es la Trigonometria?
01 Definicion de Trigonometria
La trigonometría, es la rama de las matemáticas, que estudia la relación que hay en los triángulos rectángulos, y que relaciona las medidas de sus lados
con las medidas de sus ángulos.
Todos los triángulos cumplen que:
1.- Cualquier tipo de triángulo, sólo puede tener un ángulo recto.
2.- La suma de 2 lados de cualquier triángulo, siempre es mayor, que la del otro lado.
3.- Los 3 ángulos internos de cualquier triángulo, suman 180º Grados.
4.- Dos triángulos rectángulos, son similares, cuando tienen los mismos ángulos internos.
5.- Dos triángulos rectángulos, son congruentes, cuando uno es el espejo del otro.
Reglas de los 2 Tipos de Triángulos Rectángulos de los que Derivan el Resto
1.- Los 2 lados del ángulo recto de los triángulos rectángulos, son las medidas de alto y ancho del triángulo rectángulo.
2.- Los triángulos rectángulos isósceles, son los únicos que derivan en si mismos, al seccionar-los con la bisectriz congruentemente por la mitad de su ángulo recto.
3.- Los triángulos que no son rectángulos, pueden derivar en 2 que si lo son.
Los 3 triángulos no rectángulos, salen de 2 triángulos rectángulos y cumplen siempre que:
1.- Los triángulos equilateros, seccionados congruentemente por la mediana, que es a su vez la mediatriz o la bisectriz de cualquiera de sus angulos o lados iguales,
derivan de 2 triángulos rectángulos escalenos.
2.- Los triángulos isósceles, seccionados por una mediatriz, pueden derivar en 2 triángulos rectángulos.
3.- Los triángulos Escalenos, seccionados por una mediatriz, pueden derivar en 2 triángulos rectángulos.
02 Medidas de los Angulos de los Triangulos
Para medir ángulos se utilizan dos unidades fundamentalmente que son:
Grado sexagesimal:
Es el arco que se obtiene al dividir la circunferencia en 360 partes iguales.
Un grado tiene 60 minutos y un minuto tiene 60 segundos.
Radián:
Es el ángulo cuya longitud de arco equivale al radio de la circunferencia.
Así el radián vale: Longitud/radio = (2 Pi · R) / R = 2 Pi
Un radián vale aproximadamente 57º
03 Relacion del Cuadrado Magico con el Radian
Está es la relación matemática que hay entre el radian con el cuadrado mágico de la imagen 03.
Las ecuaciones siguientes se pueden hacer en las calculadoras Pol Power Calculator y en la aplicación de Factoriales de Pol Software,
que tienes enlaces en las descripciones de este artículo.
El ejemplo empieza así:
1.665 = 816 + 357 + 492
1.665 = 834 + 159 + 672
57,20831829 = 1.665 yRoot 1,5 o el reverso del ante-cuadrado de 1.665
El teorema de Pitágoras, es muy conocido, y muy usado, en muchas áreas de las matemáticas y es la relación que hay entre mezclas de áreas cuadradas.
El teorema de Pitágoras, es muy claro y dice sobre los lados de los 2 tipos de triángulos rectángulos, lo siguiente:
Por esto es una mezcla de áreas cuadradas que tiene la ecuación utilizando sus 2 lados con la hipotenusa.
Teorema de Pitágoras Para Cualquier Triángulo Rectángulo Escaleno:
(A^2)+(B^2)=(C^2)
El área de un triángulo rectángulo Escaleno es: (A·B)/2
Teorema de Pol Para el Triángulo Rectángulo Isósceles:
((A^2)·2)=(C^2) y esto es igual a (A·A)+(A·A)=(C·C) y por su inversa ((C·C)/2)yRoot(2)=A
El área de un triángulo rectángulo isósceles es: (A·A)/2
01 02 Que Son Las Ternas Pitagoricas
Se les llama "Ternas Pitagóricas" a las ecuaciones con los 3 lados de un triángulo rectángulo que coincidan con números
finitos en cada valor de la ecuación del teorema de Pitágoras.
No existen ternas Pitagóricas de triángulos rectángulos Isósceles, ya que todas las ternas Pitagóricas conocidas son sobre triángulos rectángulos escalenos.
Estas son las 5 ternas Pitagóricas de números naturales y diferentes proporcionalmente, que son las más conocidas, con valores de base menores a 50:
(3^2) + (4^2) = (5^2) = 9 + 16 = 25
(5^2) + (12^2) = (13^2) = 25 + 144 = 169
(7^2) + (24^2) = (25^2) = 49 + 576 = 625
(8^2) + (15^2) = (17^2) = 64 + 225 = 289
(9^2) + (40^2) = (41^2) = 81 + 1600 = 1681
Las ternas Pitagóricas, pueden ser similares, cuando son de proporciones racionales con factores en común cómo las siguientes:
5 = RootSquare((3^2)+(4^2)) aquí la terna Pitagórica perfecta sobre números naturales.
2,5 = RootSquare((1,5^2)+(2^2)) aquí una similar a la anterior con los primeros racionales.
1,25 = RootSquare((0,75^2)+(1^2)) similar.
0,625 = RootSquare((0,375^2)+(0,5^2)) aquí todos son racionales y similares al primero.
0,3125 = RootSquare((0,1875^2)+(0,25^2)) similar también...
Etc...
Estas 3 son similares naturalmente por tener factores comunes cómo las anteriores
(3^2) + (4^2) = (5^2) = 9 + 16 = 25 esta es muy conocida y además es perfecta
(15^2 ) + (20^2 ) = (25^2) = 225 + 400 = 625 esta ya no es perfecta pero similar a la anterior
(45^2 ) + (60^2 ) = (75^2) = 2025 + 3600 = 5625 esta tampoco es perfecta pero similar a la anterior
Así, siendo esta, la terna pitagórica de números seguidos y más pequeña, es perfecta, siendo la suma de los tres factoriales de suma o sus ante-cuadrados los que suman 31
Donde 31!S=31^1,5=Número_Prefecto=496 de 31·16=32·15,5
Así, esta terna, también cumple con la terna Polidiana con números enteros seguidos de esta forma:
Entonces: 2+3+3+4=12 y 4+5=9 12+9 = 21 = 6!S = 6^1,5 donde 6 es también número perfecto...
Esta es una rareza matemática y Pitagórica, que cumple con números 2 3 4 y 5 de manera continua de manera única, cosa que no se repite en ninguna
otra terna Pitagórica, por el hecho de que es perfecta, e inicial saliendo de los primeros 4 números de valor grupal.
El último teorema de Fermat, establece que, la ecuación diofantina sobre números naturales de base diferente y exponente igual establece que:
(A^N)+(B^N)=(C^N) no puede ser satisfecha, cuando N es natural de valor grupal mayor a 2
Cuando N es igual a 1 el problema es trivial, y cuando N es igual a 2 , puede resultar en lo que son las ternas Pitagóricas ya descritas,
y las mayores a 2 , se dice que no tienen solución.
Andrew Wiles demostró que el teorema es cierto, ya que sin sumas de más, el teorema resulta ser cierto.
Si a este teorema le añadieramos que solo puede ser resuelto de este modo cuando N cumple N-1 veces la suma...
Por ejemplo:
Tenemos (A^3)+(B^3)+(C^3)=(D^3)
(1^3)+(6^3)+(8^3)=(9^3)
1+216+512=729
Con todo esto, puedes cerciorarte que lo que se cumple es algo de esto:
(2^1)+(2^1)=(2^2)
(3^1)+(3^1)+(3^1)=(3^2)
Donde en esto, nos podemos fijar, en que cuando crece base, también lo hace el número de sumas, y es por esto, que se cumple el
teorema de fermat en todo esto. Podriamos decir que el número de sumas es la que decide el cierre simétrico de esa simetría.
03 El Teorema de la Terna Polidiana
El teorema de Pitagoras de los cuadrados cumple también con triángulos rectángulos, lo que yo llamo sus ternas Polidianas, que están constituidas,
de los 2 triángulos rectángulos sea este escaleno o isósceles:
Los Triángulos Rectángulos Isósceles tienen la formula de:
Las ternas Pitagóricas se refieren a cuando todas estas ecuaciones que tienen los triángulos rectángulos escalenos,
tienen los dos lados de altura y anchura de números finitos, que se cumplen con números finitos, en los cuadrados y ante-cuadrados.
Entonces las ternas Polidianas cumplen también cumplen con estas ecuaciones:
(A^1,5)+((A-1)^1,5)+(B^1,5)+((B-1)^1,5)=(C^1,5)+((C-1)^1,5) donde esto es igual que (A^2)+(B^2)=(C^2)
Por ejemplo: La terna Pitagórica Perfecta del 3 4 de resultado 5 es la siguiente:
Terna Pitagórica Perfecta (3^2) + (4^2) = (5^2)
Donde eso se traduce a que tendríamos lo siguiente:
Ternas Polidianas finitas salidas de la terna Pitagórica perfecta indicada.
Donde X = (2^1,5) + (3^1,5) = (3^2) = (A^2)
Donde Y = (3^1,5) + (4^1,5) = (4^2) = (B^2)
Donde Z = (4^1,5) + (5^1,5) = (5^2) = (C^2)
Entonces la ecuación X+Y=Z es la misma para ambos tipos de ternas pero tiene la diferencia de que las Pitagóricas son cuadradas
y las Polidianas son de ante-cuadrados correlativos para cada uno de esos cuadrados del teorema principal...
Hay que entender que el ante-cuadrado de un número X se calcula así:
La Importancia de los Lados de los Triangulos Rectangulos
Todos los lados de un triángulo rectángulo, los 2 lados y su hipotenusa, son vitales para obtener los valores de seno, coseno y tangente.
- El Seno es el lado del triángulo rectángulo opuesto dividido por la hipotenusa. - El Coseno es el lado del triángulo rectángulo adyacente dividido por la hipotenusa. - La Tangente es ambos lados del triángulo rectángulo opuesto dividido por el adyacente.
La geometría, es una de las ramas de las matemáticas, que estudia las leyes y la ciencia, de todo lo que tiene que ver con conceptos
elementales para manejar formas y figuras, situadas dentro de lo que llamamos planos bi-dimensionales o espacios tri-dimensionales,
y que describimos con conceptos primitivos para describir algo real o imaginario que se haya en un lugar.
En geometría, nunca podremos describir la realidad por puntos, ya que en la vida real, estos puntos, que podrían representar átomos,
no tienen el mismo tamaño igualitario entre todos, impidiendo su comprensión lógica por la geometría, ya que en está aplicamos una
escala para esos puntos de cierto tamaño igualitario, cosa que en la vida real es diferente.
La geometría es por tanto, la ciencia que estudia todos los datos y conceptos elementales, necesarios para definir y construir formas
y figuras geométricas, en lugares geométricos de alojamiento construidos con formas primitivas constructivas.
02 Ideas Primitivas o Conceptos Primitivos
Lugares Geométricos de Alojamiento
El plano: es una zona plana de puntos ordenados que tienen cierta escala, y que en conjunto conforman una superficie plana,
que es semejante a una matriz bidimensional, que de manera plana en 2D, hace de soporte físico a escala de puntos con cierto tamaño igual para cada punto,
y es donde reflejamos todos los puntos de las formas y las figuras planas, construidas con las formas primitivas constructivas. El plano puede estar
representado por la región de las coordenadas 1x1+1x1 donde esto sería un plano de 2x2=4 puntos mínimos.
El área: es la zona plana de puntos interiores que contiene una figura en el plano o superficie, aunque también nos podemos referir a la área
cómo las dimensiones del propio plano o superficie.
El espacio: es la zona de puntos ordenados de varios planos 2D, que se apilan en n capas de planos apilados y que ordenados, alojan
todos los puntos de varios planos en conjunto. El espacio puede estar representado por la región de las coordenadas 1x1x1+1x1x1 donde esto sería un
espacio de 2x2x2=8 puntos mínimos.
Formas Primitivas Constructivas
El cruce adimensional: es la coordenada, que no tiene dimensión ni forma, siendo una simple coordenada de algún cruce
que se haya en un plano o espacio. El ejemplo de coordenada central llamada centro de un cubo o de una esfera de 8 puntos mínimos
es la coordenada 0x0x0+0x0x0
El punto dimensional: es la parte dimensional visible a cierta escala, de lo que están compuestas todas las formas y las figuras, situadas en un
plano o espacio. El ejemplo de coordenada de un punto con volumen de 1 sólo punto es 1x1x1+0x0x0
La línea: es toda aquella sucesión de puntos que existen entre 2 puntos, que cuando decimos que es recta,
se unen por el camino mas corto y de menor número de puntos, teniendo esta línea cómo mínimo 2 puntos que son sus
coordenadas que la constituyen.
El Segmento: es todo aquel trozo o parte no entera de una línea recta.
Puntos Comunes de las Formas Constructivas en el Alojamiento
El ángulo: es la medida en grados, que mide la inclinación entre 2 líneas rectas dentro de los planos.
El vértice: es el cruce de una intersección entre más de 1 línea recta o aristas de planos o espacios.
La intersección: es un cruce común de encuentro entre más de 1 línea recta o mas de 2 aristas en planos y espacios.
Figuras Construidas con las Formas Primitivas Constructivas
La Figura: es el nombre que le damos a la unión de varias formas primitivas constructivas en una sola, con las que construimos
algo real o imaginario en un plano o espacio.
03 Area y Volumen de las Figuras
Área de las Figuras Planas
El área, la superficie o el plano, es la medida, que contabiliza el tamaño de una línea sumada en N capas iguales o no que conforman una figura plana 2D.
La medida del área, es así, 2 variables numéricas ( Puntos de Alto · Puntos de Ancho ), que contabilizan el tamaño máximo ( Puntos Totales ) dados en una superficie plana 2D.
Volumen de las Figuras en el Espacio
El volumen, es la medida, que contabiliza el tamaño de varias superficies planas llamadas áreas, apiladas en N capas, con las que conformar
un espacio 3D.
La medida de volumen, es así, 3 variables numéricas ( Puntos de Alto·Ancho·Fondo ), que contabilizan el tamaño máximo ( Puntos Totales ) dados en el espacio 3D.
Figuras Trigonométricas Basicas: Los Triángulos Rectángulos.
Las figuras trigonométricas básicas se construyen con los conceptos primitivos constructivos y de estos salen tan solo 2 tipos con los que
construir el resto de figuras.
Triángulos Rectángulos Isósceles basados en una sola medida A
Triángulos Rectángulos Escalenos basados en 2 medidas A y B
El Primero Cumple con el Teorema de Pol Sobre el lado al Cuadrado
(A·A)·2=(C·C) También es (A·A)+(A·A)=(C·C) y por su inversa ((C·C)/2)yRoot(2)=A
El Segundo Cumple con el Teorema de Pitágoras
(A·A)+(B·B)=(C·C)
Las Figuras Trigonométricas Basadas en las Básicas: El Circulo y la Elipse
Las figuras trigonométricas básicas, nos brindan la solución de tener 3 puntos con los que construir círculos y elipses, con los cuales podemos construir
otro tipo de figuras llamadas polígonos regulares de más de 3 lados gracias a los 3 puntos mínimos sobre el plano.
Las figuras Circulo y Elipse son la base para construir cualquier otra figura a la que llamaremos poligonal. Estas tienen de teorema estos 2 tipos:
El circulo donde la distancia entre la línea curva y el centro es el radio y 2 veces esto es el diámetro.
La elipse donde las distancias del radio máximo y el radio mínimo son nuestras variables R1 y R2
El Primero el Circulo Cumple que con solo el Radio del Circulo tenemos que:
Área Circulo = Número_PI·Diámetro = PI·A·A
El Segundo el Elipse Cumple que con 2 Radios pertenecientas a la Elipse tenemos:
Área Elipse = Número_PI·R1·R2 = PI·A·B
02 Definicion de Figura o Poligono
Las figuras o polígonos regulares, son las figuras derivadas de las figuras trigonometricas y que están circunscritas al circulo ya que estas
son de una sola medida de los n lados, con sus vértices iguales para sus n lados de valor grupal mayor a 2 , y están ubicados en lugares geométricos
de alojamiento llamados planos 2D.
La forma de construir todas las figuras de polígonos regulares, pasa siempre, que están circunscritas al circulo, y que cuando no son regulares
( no son todos los lados iguales ) estas están circunscritas a la elipse y siempre tienen cómo formas iniciales las figuras trigonométricas, que con
esto también adoptan los conceptos primitivos constructivos, de los que están hechos todas las figuras o polígonos.
03 Figuras Poligonales Regulares
Una figura poligonal regular: es en si, una construcción lógica de un número de valor grupal de formas en un plano 2D, que utiliza un conjunto de puntos y
líneas rectas, de una superficie plana 2D, que está limitada o no por un contorno hecho de n segmentos rectos, soldados entre si por sus extremos
llamados vértices, en cierta inclinación llamada ángulo.
A estos segmentos les llamamos lados y a sus puntos comunes de inclinación los llamamos vértices.
Así, un polígono, es una región de plano 2D, limitada por mas de 2 líneas poligonales, que limitan o no la figura formada por n segmentos que unen n puntos
circularmente en el plano.
El circulo:, es una figura poligonal regular, de tantos lados cómo hagan falta, para rodear con n líneas rectas un cruce o punto central llamado centro,
donde estas líneas tienen todos sus puntos a la misma distancia del punto o cruce centro que a esta distancia la llamamos radio.
1 Los Poliedros Regulares, son los Construcciones Poligonales de Mas de un Plano
A los poliedros regulares también se les conoce cómo los sólidos platónicos, con todos sus lados y vértices iguales orientados y distribuidos en espacios 3D.
Sólo existen 5 tipos de poliedros regulares conocidos, de los que sólo hay 3 tipos diferentes de poligonos regulares de caras llamadas lados,
que son los de la imagen del artículo.
El matemático Leonhard Euler, propuso esta formula cuando las letras de la definición son: F=Caras_o_Lados , E=Aristas_o_Rectas y V=Vertices.
V+F-E=2
Por ejemplo, el cubo es:
6+8-12=2
El Problema del Cuadrito del Infinito
01 El Problema del Cuadrito de Mas
El problema del cuadrito o casilla de más, es un problema por cambio de figura y de área equivalente, que solo es una ilusión óptica.
Hay 2 formas de ver ese cuadrito de más que son:
1.- Calculando el área del cudrado completo y el área del rectángulo completo.
2.- Contando cuadritos particionados por la hipotenusa y enteros no particionados.
Calculando el área de las dos figuras, te das cuenta de que la mitad triangular del área del rectángulo, tiene media casilla más
que el cuadrado completo.
Para el segundo caso, se puede ver que en la figura rectángulo partida por la hipotenusa, el área triangular tiene 26 casillas enteras para cada triángulo
y 13 casillas particionadas por la hipotenusa.
A diferencia del cuadrado que tiene 28 enteras por cada triángulo y 8 particionadas, las cuales si hechas cuentas, puedes ver que hay medio cuadrado más por
áreas triangulares de la figura rectángulo.
02 Resuelve Este Cambio de Figura
Este es el Procedimiento Para Detectar los Cuadritos Particionados de Más de la Figura Rectángulo:
Forma de Averiguar-lo ( Lo Correcto Contabilizando las Áreas de las Figuras ):
Área de Cada Cuadrado de 3·5
15 = 5 · 3
Área de Cada Triángulo de 3·5
7,5 = (5 · 3) / 2
Área de Cada Triangulo de 3·2
3 = (3 · 2) / 2
Área de Cada Triangulo de 3·3
4,5 = (3 · 3) / 2
Área Figura Completa del Rectángulo:
15 + 3 + 4,5 = 32,5 · 2 Triángulos = 65 Casillas
Área Figura Completa del Cuadrado:
15 + 15 + 7,5 + 7,5 + 4,5 + 4,5 = 64 Casillas
03 La Analoga Relacion de este Problema con las Potencias
La análoga relación que hay en el problema del cuadrito del infinito, se puede extrapolar a las potencias de las Pol Power Calculator.
Las potencias de las Pol Power Calculator suelen tener números en potencias de exponente racional, que no cuadran como nos hacen creer
en otras calculadoras.
Por ejemplo, en otras calculadoras se cumple lo siguiente:
(2^1,5)·(2^1,5)=2^3
Donde esto mismo en las Pol Power Calculator es lo siguiente:
(2^1,5)·(2^1,5)=2^3,125
Esta proporción de más ( 0,125 ) equivale al cuadrito del infinito, donde en la Pol Power Calculator el 2^1,5 equivale al 13·5=65 y en
otras calculadoras se asume que el valor de 2^1,5 es el de 8·8=64
La diferencia esta en que una es un cuadrado ( otras calculadoras ), y la otra no lo es ( Pol Power Calculator ), y en esto esta la
pequeña diferencia del cuadrito de más, en que para una es un cuadrado y la otra no lo es.
Siguiendo el rumbo de esto del cuadrado, hay que decir que, la Pol Power Calculator cumple lo siguiente:
2^1=2
2^2=4
Así 2^1,5=3
Así los cuadrados de entre 2^1 y 2^2 están los números 4=2^2 y 16=4^2 por tanto el número intermedio de estos que es el 3^2=9 y
esto es el ((16-4)/2)+3=9 donde este 9 es el (2^1,5)^2=9
Esto puede resultar en algo confuso, pero, es un hecho real aplicado en matemáticas de las Pol Power Calculator, y este es uno de
los motivos del por que dos exponentes racionales no se pueden sumar en las Pol Power Calculator, y es que esto es porque ningún número
al cuadrado puede dar ocho exacto pero nueve si...
05 Cambios Entre Bases:
¿Como Cambiar Entre Bases en JavaScript?
01 Cambios de Base
Cambia entre bases con este aplicativo de ejemplo de Pol Software.
Puedes hacer números mayores a estos con las calculadoras Pol Power Calculator.